Noninvasive image analysis of 3D construct mineralization in a perfusion bioreactor.

نویسندگان

  • Blaise D Porter
  • Angela S P Lin
  • Alexandra Peister
  • Dietmar Hutmacher
  • Robert E Guldberg
چکیده

Although the beneficial effects of perfusion on cell-mediated mineralization have been demonstrated in several studies, the size of the mineralized constructs produced has been limited. The ability to quantify mineralized matrix formation non-invasively within 3D constructs would benefit efforts to optimize bioreactor conditions for scaling-up constructs to clinically relevant dimensions. In this study, we report a micro-CT imaging-based technique to monitor 3D mineralization over time in a perfusion bioreactor and specifically assess mechanisms of construct mineralization by quantifying the number, size, and distribution of mineralized particle formation within constructs varying in thickness from 3 to 9 mm. As expected, mineralized matrix volume and particle number increased with construct thickness. Analyzing multiple concentric volumes inside each construct indicated that a greater proportion of the mineral volume was found within the interior of the perfused constructs. Interestingly, intermediate-sized 6mm thick constructs were found to have the highest core mineral volume fraction and the largest mineralized particles. Two complementary mechanisms of increasing total mineral volume were observed in the 6 and 9 mm constructs: increasing particle size and increasing the number of mineralized particles, respectively. The rate of mineralized matrix formation in the perfused constructs increased from 0.69 mm(3)/week during the first 3 weeks of culture to 1.03 mm(3)/week over the final 2 weeks. In contrast, the rate of mineral deposition in the static controls was 0.01 mm(3)/week during the first 3 weeks of culture and 0.16 mm(3)/week from week 3 to week 5. The ability to monitor overall construct mineralization non-invasively coupled with quantitative analysis of mineralized particle size, number, and distribution offers a powerful tool for elucidating how mineral growth mechanisms are affected by cell type, scaffold material and architecture, or bioreactor flow conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Osteogenic Differentiation and Mineralization on Compact Multilayer nHA-PCL Electrospun Scaffolds in a Perfusion Bioreactor

Background: Monolayer electrospun scaffolds have already been used in bone tissue engineering due to their high surface-to-volume ratio, interconnectivity, similarity to natural bone extracellular matrix (ECM), and simple production. Objectives: The aim of this study was to evaluate the dynamic culture effect on osteogenic differentiation and mineralizationi into a compact cellular multilayer ...

متن کامل

Noninvasive Metabolic Imaging of Engineered 3D Human Adipose Tissue in a Perfusion Bioreactor

The efficacy and economy of most in vitro human models used in research is limited by the lack of a physiologically-relevant three-dimensional perfused environment and the inability to noninvasively quantify the structural and biochemical characteristics of the tissue. The goal of this project was to develop a perfusion bioreactor system compatible with two-photon imaging to noninvasively asses...

متن کامل

Geostatistical and multi-fractal modeling of geological and geophysical characteristics in Ghalandar Skarn-Porphyry Cu Deposit, Iran

This work aims at figuring out the spatial relationships between the geophysical and geological models in a case study pertaining to copper-sulfide mineralization through an integrated 3D analysis of favorable target. The Ghalandar Skarn-Porphyry Cu Deposit, which is located in NW Iran, is selected for this research work. Three geophysical surveys of direct current electrical resistivity and in...

متن کامل

Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture

The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perf...

متن کامل

Noninvasive, quantitative, spatiotemporal characterization of mineralization in three-dimensional collagen hydrogels using high-resolution spectral ultrasound imaging.

As tissue engineering products move toward the clinic, nondestructive methods to monitor their development and ensure quality are needed. In this study, high-resolution spectral ultrasound imaging (SUSI) was used to noninvasively characterize mineral content in collagen hydrogels. SUSI was used to generate three-dimensional (3D) grayscale (GS) images of construct morphology with submillimeter r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 28 15  شماره 

صفحات  -

تاریخ انتشار 2007